If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49t^2+140t=-98
We move all terms to the left:
49t^2+140t-(-98)=0
We add all the numbers together, and all the variables
49t^2+140t+98=0
a = 49; b = 140; c = +98;
Δ = b2-4ac
Δ = 1402-4·49·98
Δ = 392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{392}=\sqrt{196*2}=\sqrt{196}*\sqrt{2}=14\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(140)-14\sqrt{2}}{2*49}=\frac{-140-14\sqrt{2}}{98} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(140)+14\sqrt{2}}{2*49}=\frac{-140+14\sqrt{2}}{98} $
| 20+8x+-3x=-10+3x+-3x | | (2x+3)/3=(3x-15)/11 | | 1/2x+2-2/3x=1,5x-6 | | 14x-4-6x=6x=6+x+2-x | | x+7/2=x+5/1,6 | | x+0.2x=1.2x | | 52/5n+24/10=82/3 | | 15+x=48 | | -2x-11=-25 | | -6x+21=-4x+3 | | 3x+14=49−2x | | 3x+11=0x+41 | | -4x-5=-3x-11 | | -5x+10=-x-10 | | 6x=60−4x | | ¾x=⅛ | | ¾×x=⅛ | | 3x^2+50x-600=0 | | 4x+x=348 | | X=13x+30 | | Y=2-x^2-4/x^2 | | 4x-6=5x+1=2x+2 | | 4x-6+5x+1=2x+2 | | 5n+10=n+30 | | 10*((1.07)^x)=2000 | | 2(x-3)=3x-22 | | 5n=2n6 | | 5x-3+5x=5(4x-2)+5 | | 21=n+3 | | 18=0.5x=-2 | | 3x+29=87 | | 0,5+4=4x-3 |